fbpx Equipa do Instituto de Telecomunicações conquista prémio em competição internacional | ULisboa

Equipa do Instituto de Telecomunicações conquista prémio em competição internacional

Equipa do Instituto de Telecomunicações conquista prémio em competição internacional

Equipa do Instituto de Telecomunicações conquista prémio em competição internacional

Share Equipa do Instituto de Telecomunicações conquista prémio em competição internacional

João Moutinho, Bruno Coutinho e Lorenzo Buffoni são investigadores do Grupo de Física da Informação e Tecnologias Quânticas e os responsáveis pela conquista do galardão no concurso internacional.

Bruno Coutinho, Lorenzo Buffoni e João Moutinho, investigadores do Grupo de Física da Informação e Tecnologias Quânticas do Instituto de Telecomunicações (IT) conquistaram um dos prémios especiais do concurso Science4Cast, uma competição internacional na área da Inteligência Artificial.  A abordagem da equipa deu origem a uma solução simples, intuitiva, e escalável para o problema proposto e garantiu-lhes a distinção no concurso internacional.

João Moutinho, que é também estudante do programa de doutoramento em Física do Instituto Superior Técnico, partilha a satisfação que esta vitória trouxe à equipa. “Inicialmente na competição estavam anunciados 3 prémios para os 3 métodos que tivessem a melhor performance, mas havia a possibilidade de prémios especiais utilizando outras avaliações como a criatividade, etc. Foi dessa forma que, apesar de o nosso método ficar em 4.º lugar no ranking, foi reconhecido para um prémio especial devido a ser uma solução mais simples e original do que os outros, com um sacrifício de performance mínimo”, recorda.

Com 72 submissões de equipas de todo o mundo, o objetivo do Science4Cast passava por prever futuras ligações numa rede de conceitos científicos nas áreas de machine learning e Inteligência Artificial. “Cada nodo na rede corresponde a um conceito e uma ligação na rede significa que esses dois conceitos foram utilizados em conjunto numa publicação. Para a competição tínhamos acesso à evolução diária da rede desde 1994 até 2017, e o objetivo era prever as ligações que se terão formado entre 2017 e 2020, simulando assim a previsão de novas ideias científicas”, refere João Moutinho. “Este tipo de estudo é comum na área de Science of Science, sendo um dos objetivos a criação de ferramentas computacionais que possam ajudar investigadores a encontrarem novas ideias para explorar fora da sua zona de conforto”, adiciona.

De acordo com João Moutinho, neste tipo de competição são tipicamente “criados modelos muito gerais com um grande número de características possíveis que depois têm de ser treinados para se adaptarem ao problema em questão”.  No método que desenvolveu e que lhe valeu a distinção, a equipa do IT não utilizou, surpreendentemente, nenhuma técnica de machine learning. “Em vez disso, fizemos uma análise do problema com métodos simples de Network Science e conseguimos identificar duas características-chave desta rede: as novas ligações são feitas com maior probabilidade entre conceitos que por si só já têm muitas ligações e conceitos que têm muitos conceitos vizinhos em comum”, explica o aluno de doutoramento. “Para além disto, utilizámos também a ideia intuitiva de que as ligações mais importantes são as mais antigas, correspondendo a publicações pioneiras, e ligações mais recentes, correspondendo aos tópicos populares na atualidade”, complementa. O modelo da equipa do IT juntou estes três pontos de uma forma artesanal e diretamente aplicável ao problema, necessitando apenas de uma adaptação mínima de alguns parâmetros.

Na conferência IEEE BigData 2021, onde apresentou o trabalho vencedor, João Moutinho terá verificado que o trabalho da equipa do IT foi mesmo o único dos premiados a utilizar esta metodologia de teoria de redes, sendo que todos os outros empregaram técnicas de machine learning com contribuições de várias dezenas de características. “A vantagem do nosso método é que permite ter uma justificação intuitiva dos resultados, e não requer tantos recursos computacionais, permitindo a sua aplicação em redes ainda maiores”, destaca o aluno de doutoramento do Técnico.

Fonte: Instituto Superior Técnico

1


NOTÍCIAS DA ULISBOA

Para que esteja sempre a par das atividades da ULisboa, nós levamos as notícias mais relevantes até ao seu email. Subscreva!

SUBSCREVER